高三数学说课稿
作为一位无私奉献的人民教师,可能需要进行说课稿编写工作,编写说课稿是提高业务素质的有效途径。那么优秀的说课稿是什么样的呢?以下是小编为大家收集的高三数学说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
高三数学说课稿1目的要求
1、能从数、形两方面深刻理解线与线之间的位置关系,并会用方程法讨论直线与两类(封闭与非封闭)曲线的位置关系。
2、弦长公式的理解与灵活运用。
3、通过曲线焦点的弦的弦长问题的处理,能运用圆锥曲线的第二定义以求简化运算,使解题过程得到优化。
本节重点:
1、直线与曲线的位置关系。
2、数形结合思想的渗透。
本节难点:
1、非封闭曲线,尤其是双曲线与直线位置关系的讨论。
2、充分运用新旧知识的迁移,从数与形两方面深刻理解相关结论,构建完整的知识体系。
3、在掌握共性的(方程法)基础上,注意个性(距离法),防止负迁移,做到特殊问题能特殊处理。
教学过程
一、要点归纳:
如何解决直线与圆锥曲线的位置关系问题,方程法是通用的方法,
相应方程组的解的个数就是二者交点的个数,若有两个交点,则交点连线的长度就是相应的弦长。基本内容包括:
(一)、位置关系的分类讨论:
1、直线与封闭曲线(圆与椭圆):
以直线与椭圆为例:
因为,所以可以直接讨论判别式:
直线与曲线相离(0个交点)。
直线与曲线相切(1个交点)。
直线与曲线相交(2个交点)。
注意:对于直线与圆的位置关系的讨论,除此之外,我们常
通过圆心和直线的距离与半径的大小关系来判定。
2、直线与非封闭曲线(双曲线与抛物线):
以直线与双曲线为例:
(1)、即时,方程有唯一解,直线与渐近线平行,位置关系是相交,且只有一个交点。
(2)、时,讨论判别式:
直线与曲线相离(0个交点)。
直线与曲线相切(1个交点)。
直线与曲线相交(2个交点)。
归纳指出:对于非封闭曲线,直线与其仅有一个交点,只是二者相切的一个必要条件,而非充分条件!
(二)、直线与曲线相交——弦长问题:
设直线与曲线相交于,两交点坐标的唯一来源
是方程组,下面的弦长公式很显然:
(消元后是关于x的方程)
或(消元后是关于y的方程)
结合图象,弄清楚公式的导出方法,是为至要!
特别指出:抛物线的焦点弦性质丰富多彩,以为例,若直线过焦点,关键是注意两点:
(1)、巧设直线方程:
(2)、根据定义求弦长:
高三数学说课稿2一、传统教学和高效教学
最初的时候,是按照传统教学的方式进行备课的。课堂上教师进行知识点的讲解与演示,学生听讲,做简单的笔记。整节课按照引例→定义→分析定义→解题→画出图象→挖掘性质→总结性质→习题练习→课堂小结的流程进行。因为是传统教学,所以在第一次试讲中,课堂容量很大,课程进度较快,学生自主探究的机会几乎没有,导致学生对于直接给出的结论只能生搬硬套,对于老师给出的演示并不能完全吸收。因为没有后续作业的处理,所以在知识反馈上没有确切的结论。
而从第二次试讲开始,就开始启用了导学案制。在这里选择导学案制教学出于这样几点考虑:1.自新课标课程改革实施以来,一直提倡使用导学案制来打造高效课堂。这是现行教育变革的大势所趋,作为新教师理应学习新的教学方法并将其运用到实际教学中去,不仅提高自己身的能力和水平,同时也锻炼学生的自主学习能力,提高了学习品质。2.之前去沈阳20中学习时就听到有学校用导学案制的方法授课,重能力轻知识,将教师的身份定位为牧民,即其主要任务是将学生带到知识的草场,让其自主学习,以此取代以往的填鸭式教学。而且有过听课的基础,导学案制授课对我而言也并非绝对陌生。3.希望能够通过汇报课接触新的教学模式和教学理念,也想在汇报课的准备中给自己一个挑战,最终选择了对于我而言并不十分得心应手的导学案教学,都是希望能够在这个过程中得到更多的学习和锻炼。
二、导学案的设计与调整
既然选择了采用导学案制教学,就必然涉及到一个全新的问题,如何设计导学案。对此,我查阅了一些相关资料,了解了导学案的本质其实是引领学生学习,它的出现更加突出了“以学生为教育主体”的新型教育理念。既然是以学生为主体,而且导学案所面对的是所有的同学,那么导学案的设计就必须要切合学生自身的思维特点和能力水平。
在设计导学案的过程中,我先确定了导学案的整体规划,主要希望学生通过自主的学习探究两个点,一个是指数函数的概念,另一个是指数函数的基本性质。其中,第二个探究点相对来讲比较容易,学生通过画图可以轻松的看出指数函数的简单性质,而第一个探究点就略显困难。难点在于,首先学生并不能够通过生活实例顺利的抽象出函数模型,其次以学生先用的知识迁移能力并不能看出指数式和指数函数式之间的联系,最后,对于用形式定义函数的模式,学生还感觉有些陌生,并不能够看出这个形式的内在限定含义。
所以,经过每一次的试讲和修改,最终将导学案的命题修改为:
1、有哪些与我们生活有关的实例应用到指数幂的运算?
2、如果两个变量满足关系:(其中为常数)是否能够构成函数?若构成函数,指出该函数的定义域。
3、指数函数的定义是:
以递进式的方式提问,不仅可以引领学生在学习时层层递进,由浅入深的理解知识,同时也可以让学生更好的理解知识体系的构建过程。
三、例题和练习题的选择
在导学案中不可避免的要涉及到例题和习题,对于从未出过题目的我,必然也有一定的难度。
在选题之初,我先是研究了书上的例题,然后又研究了几本练习册上的练习题,同时也查阅了一些其他老师的课件和教案,参考了一下前辈老师的选题。我发现,课堂练习的选题不光要和已学知识点具有相当高的契合度,同时也要兼顾到不同的类型和出题方向,还要考虑难易程度是否遵循了阶梯型排序。这些问题是以前在学校读书的我从来没有想过的。
针对以上几点,在函数概念处,一道指数函数概念辨析,其目的是让学生深切领会指数函数的解析式所必须具有的结构特点,第二道是给出解析式,已知是指数函数求解参数,其目的在于将指数函数式的结构特点理解透彻,从会分辨到会应用的一个提升。
而在指数函数性质一块,主要涉及的就是比较大小的一类问题。这类问题有几个不同的类型,分别是底数相同指数不同、底数不同指数相同、底 ……此处隐藏21621个字……
【演示】许多人认为天体运行的轨迹都是圆锥曲线,
研究表明,天体数目越多,轨迹种类也越多
【演示】建筑中也有许多美丽的轨迹曲线
设计意图:让学生感受数学就在我们身边,感受轨迹
曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;
例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
法一:设,则
由得,
化简得
法二:设,由得
化简得
法三:设, 由点到定点的距离等于定长,
根据圆的定义得;
第三步:复习求轨迹方程的一般步骤
(1)建立适当的坐标系
(2)设动点的坐标M(x,y)
(3)列出动点相关的约束条件p(M)
(4)将其坐标化并化简,f(x,y)=0
(5)证明
其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化
设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。
3、主动发现、主动发展
由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。
第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)
设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。
第二步:分解动作,向学生提出3个问题:
问题1:当M位置不同时,线段BM与MA的大小关系如何?
问题2、体现BM与MA大小关系还有什么常见的形式?
问题3、你能类比例1把这种数量关系表达出来吗?
第三步:展示学生归纳、概括出来的数学问题
1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。
3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)
第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。
2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。
4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。
以下是学生课后探究得到的一些轨迹图形
课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?
可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。
以下是X轴和Y轴不垂直时的轨迹图形
五、教学设计说明:
(一)、教材
《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。
(二)、校情、学情
校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。
学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。
(三)学法
观察、实验、交流、合作、类比、联想、归纳、总结
(四)、教学过程
1、创设情景,引入课题
2、激发情感,引导探索
由梯子滑落问题抽象、概括出数学问题
第一步:让学生借助画板动手验证轨迹
第二步:要求学生求出轨迹方程
第三步:复习求轨迹方程的一般步骤
3、主动发现、主动发展
探究M不是中点时的轨迹
第一步:利用网络平台展示学生得到的轨迹
第二步:分解动作,向学生提出3个问题:
第三步:展示学生归纳、概括出来的数学问题
4、合作探究、实现创新
改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)
学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。
5、布置作业、实现拓展
(五)、教学特色:
借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。
整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。
本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。
文档为doc格式